Adaptive autocentering control for an active magnetic bearing supporting a rotor with unknown mass imbalance
نویسندگان
چکیده
This paper presents a new approach, called adaptive autocentering, that compensates for transmitted force due to imbalance in an active magnetic bearing system. Under the proposed control law, a rigid rotor achieves rotation about the mass center and principal axis of inertia. The basic principle of this approach is to perform on-line identification of the physical characteristics of rotor imbalance and to use the identification results to tune a stabilizing controller. This approach differs from the usual strategy of adaptive feedforward compensation, which models the effect of imbalance as an external disturbance or measurement noise, and then cancels this effect by generating a synchronous reference signal. Unlike adaptive feedforward compensation, adaptive autocentering control is frequency independent and works under varying rotor speed. Performance of the control algorithm is demonstrated in simulation examples for the case of rigid rotors with static or dynamic imbalance.
منابع مشابه
Analysis of Vibration Characteristics of PD Control Active Magnetic Bearing and Cracked Rotor System (RESEARCH NOTE)
Crack fault of rotor is one of the most prominent problems faced by magnetic bearing rotor system. In order to improve the safety performance of this kind of machinery, it is necessary to research the vibration characteristics of magnetic bearing cracked rotor system. In this paper, the stiffness model of the crack shaft element was established by the strain energy release rate (SERR) theory. T...
متن کاملH∞ Robust Controller Design and Experimental Analysis of Active Magnetic Bearings with Flexible Rotor System
H∞ controller for active magnetic bearings (AMBs) with flexible rotor system was designed in this paper. The motion equations of AMBs and flexible rotor system are built based on finite element methods (FEM). Weighting function matrices of H∞ controller for AMBs are studied for both the sensitivity and the complementary sensitivity of H∞ control theory. The simulation shows that the H∞ control ...
متن کاملApplication of H2 -based Sliding Mode Control for an Active Magnetic Bearing System
In this paper, application of Sliding Mode Control (SMC) technique for an Active Magnetic Bearing (AMB) system with varying rotor speed is considered. The gyroscopic effect and mass imbalance inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Transformation of the AMB dynamic model into regular sy...
متن کاملExperiments in the Control of Unbalance Response Using Magnetic Bearings
Unbalance response is a common vibration problem associated with rotating machinery. For several years, researchers have demonstrated that this vibration could be greatly alleviated for machines using active magnetic bearings through active control. Many of the control strategies employed fall into a class which the authors have termed adaptive open loop control. In this paper, three algorithms...
متن کاملUsing an Appropriate Controller for Independent Current Control for Motoring of Force Windings of Bearing less Induction Motor
A bearingless induction machine has combined characteristics of induction motor and magnetic bearings. Therefore, the advantages are small size and low-cost. In the magnetic suspension of the bearingless motors, suspension forces are generated based on the feedback signals of displacement sensors detecting the movement of the rotor shaft. The suspension forces are generated taking an advantage ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Contr. Sys. Techn.
دوره 4 شماره
صفحات -
تاریخ انتشار 1996